Role of human cytochrome P450 (CYP) in the metabolic activation of nitrosamine derivatives: application of genetically engineered Salmonella expressing human CYP.
نویسندگان
چکیده
The role of human cytochrome P450 (CYP) in the metabolic activation of tobacco-related N-nitrosamines was examined by Salmonella mutation test using a series of genetically engineered Salmonella typhimurium YG7108 strains each co-expressing a form of CYP (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5) together with human NADPH-cytochrome P450 reductase. Seven tobacco-related N-nitrosamines such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, N-nitrosodiethylamine, N-nitrosopyrrolidine, N-nitrosopiperidine, N-nitrosonornicotine, N-nitrosoanabasine, and N-nitrosoanatabine were used. The CYP2A6 was found to be responsible for the mutagenic activation of essentially all tobacco-related N-nitrosamines examined. On the basis of the evidence, genetic polymorphism of the CYP2A6 gene appeared to be one of the factors determining cancer susceptibility caused by smoking. Previously, we found the whole deletion of the CYP2A6 gene (CYP2A6*4C) as a type of genetic polymorphism in Japanese. We hypothesized that individuals possessing the gene homozygous for CYP2A6*4C were incapable of activating tobacco-related N-nitrosamines and showed lower susceptibility to lung cancer induced by tobacco smoke. Thus, the relationship between the CYP2A6*4C and the susceptibility to the lung cancer was evaluated. The frequency of the CYP2A6*4C was significantly lower in the lung cancer patients than healthy volunteers, suggesting that the subjects carrying the CYP2A6*4C alleles are resistant to carcinogenesis caused by N-nitrosamines because of the poor metabolic activation capacity. Taking these results into account, CYP2A6 is an enzyme enhancing lung cancer risk.
منابع مشابه
Genetically engineered bacterial cells co-expressing human cytochrome P450 with NADPH-cytochrome P450 reductase: prediction of metabolism and toxicity of drugs in humans.
Genetically engineered bacterial cells expressing human cytochrome P450 (CYP) have been developed as new tools to predict the metabolism and toxicity of drugs in humans. There are various host cells for the heterologous expression of a form of CYP. Among them, bacterial cells such as Escherichia coli (E. coli) have advantages with regard to ease of use and high yield of protein. CYP protein cou...
متن کاملActivation of the anticancer drugs cyclophosphamide and ifosfamide by cytochrome P450 BM3 mutants.
Cyclophosphamide (CPA) and ifosfamide (IFA) are widely used anticancer agents that require metabolic activation by cytochrome P450 (CYP) enzymes. While 4-hydroxylation yields DNA-alkylating and cytotoxic metabolites, N-dechloroethylation results in the generation of neuro- and nephrotoxic byproducts. Gene-directed enzyme prodrug therapies (GDEPT) have been suggested to facilitate local CPA and ...
متن کاملCytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes
There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP red...
متن کاملGenetic polymorphism of cytochrome P450 as a biomarker of susceptibility to environmental toxicity.
Cytochrome P450 (CYP) enzymes are responsible for the metabolism of numerous xenobiotics and endogenous compounds, including the metabolic activation of most environmental toxic chemicals and carcinogens. Both metabolic and genetic polymorphisms have been identified for human CYP enzymes. The association of CYP genetic polymorphism and human cancer risk, and susceptibility to environmental haza...
متن کاملCytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism reviews
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2002